Tooling boosts productivity at automotive subcontractor

Scottish subcontract manufacturer Euro Precision Ltd has specified cutting tools from Industrial Tooling Corporation (ITC) to improve productivity on a range of automotive components. The Glenrothes-based subcontract engineering company has built its reputation on manufacturing critical precision components and assemblies to exacting quality standards for the automotive, aerospace, medical, telecommunications petrochemical and electronics sectors.

The diverse customer base has been established over a 25 year history, and from its 30,000 sq ft factory, the company boasts clients such as Siemens Healthcare, Glenair, Leonardo, Zeiss and AMG Petronas, to list but a few. With a customer base of which any subcontract business would be proud, Euro Precision has established a reputation for the production of high-quality workmanship, inspired innovation, cost-effective solutions and customer service.
The Fife company recently undertook a project for Mercedes HPP (High Performance Powertrains) that required programming and tooling efficiencies, and general improvements for machining a series of engine components. The complex outlet manifolds and valve waste assemblies are produced from Inconel 625 on Euro Precision’s Matsuura MAM-72 five-axis multi-pallet machining centre. Manufactured for the next generation of supercar, the Mercedes HPP project requires over 2700 manifold outlets and 2000 valve waste assemblies. With such production volumes, it was critical for Euro Precision to get the process running
as efficiently as possible, and this is where ITC entered the fray.
Commenting upon the situation, Euro Precision’s engineering manager Grant Steele says: “We required a stable process that could achieve the shortest possible cycle time, while returning good size control and cost-effective tooling solutions. I already tooled the part up with another manufacturer and, because material was Inconel 625, I was expecting to take a hit on slower machining times and poor tool life. However, based on production requirements and the project timeframe, I couldn’t live with the current method.

“I discussed the situation with Gary Heaney from ITC,” he continues. “Gary has been a regular supplier of high-quality aluminium cutting tools to Euro Precision for a long time. Down the years, he has successfully supported us on many machining projects to reduce cycle times, tooling costs, and improve our machining performance and consistency. With his experience of supplying tooling to the aerospace engine sector – primarily involving the cutting of high-temperature alloys – Gary seemed the obvious go-to person.”
Heaney immediately manged to double surface speeds by introducing ITC’s Cyber series of multi-flute, variable-helix end mills and a trochoidal machining strategy at 3xD axial depth of cut with 4% radial step over and high feed per tooth.
“With some subtle programme changes, we instigated a trochoidal machining strategy that increased the step over and radial engagement with the application of ITC’s 12 mm diameter solid-carbide Cyber series,” says Steele. “This reduced the cycle time by 50% and increased tool life by three times.”
By implementing a machining strategy that incorporated a 3xD axial depth of cut instead of the previous 1.5xD strategy, Euro Precision was able to conduct most of the rough machining in a single pass. The machining parameters far exceeded the realms of possibility for the previous tools supplied by a prominent international tooling vendor. Notably, the performance of the ITC Cyber series and its ability to prolong machining on such a challenging material led to further ITC solid-carbide end mills being introduced to the project.
Says Steele: “Following the success of the roughing tools, I asked Gary to look at the entire part. He subsequently supplied a range of radii corner tools and micro ball end mills that have performed first time, every time. We’re now machining another high-performance engine component and ITC’s Cyber tooling is again producing the goods.

“Gary certainly hasn’t rested on his laurels,” adds Steele. “He is always looking to provide continuous improvement and we are already testing new indexable tooling solutions from ITC business partner Widia.”
The Scottish manufacturing success story at Euro Precision is built upon the foundation of high-specification machine tools like the two Matsuura MAM72 five-axis machining centres. The Matsuura machines incorporate the Big Kaiser face and taper dual-contact spindle interface, which ITC says is the only genuine face and taper contact system on the market. To benefit from the performance, rigidity and precision of the Big Kaiser face and taper system, which guarantees run-out of 1 µm at the nose and 3 µm at 4xD, Euro Precision has installed a complete range of Big Kaiser precision collet and chuck systems (available in the UK from ITC).
The stability of the Matsuura spindle configuration and Big Kaiser face and taper interface has enabled ITC to introduce a variety of high-performance tooling solutions. Included are a complete suite of five and six-flute VariMill end mills, as well as indexable face and shoulder milling tools from Widia with both rough and finish machining insert designations.
The machining platform has enabled ITC’s Heaney to utilise both the ITC and Widia tools to full effect. Ultimately, the results have been a revelation to Euro Precision, which has also implemented Widia indexable drilling and turning, as well as solid-carbide drilling tools, to great success following the Mercedes Inconel project.
For further information www.itc-ltd.co.uk

Flexibility secures multi-pallet machining cell order

The first machining centre built by German manufacturer Hermle to be installed at a Hyde Group company has been operating around the clock since April this year at Stoneswood Precision Components in Dukinfield. The C400 five-axis vertical machining centre, supplied by sole agent Kingsbury, has been automated with the machine manufacturer’s HS Flex pallet storage and retrieval system to enable unattended subcontract production overnight and at weekends.

Stoneswood Precision’s managing director Charles Day says: “We looked at four options before deciding to buy the Hermle cell. Its major differentiator is the ability to stop automatic production quickly and use the machine in manual mode to manufacture a one-off part. The other solutions we looked at could not achieve that easily.
“The flexibility it provides is already proving useful, as it is allowing us to machine fixtures during the day and simultaneously set up the HS Flex for lights-out running overnight,” he adds, before stating that “the cell’s connectivity also fits well within the Industry 4.0 environment that we are creating in our factory”.
Stoneswood Precision’s current facility was set up in 2004 to produce 450 different aluminium and titanium parts for a military aircraft, involving the machining of mainly wing details. Already a user of several multi-pallet production systems based on horizontal machining centres, the subcontractor needed an additional system to fulfil a different contract for the manufacture of aluminium control boxes.
Initially, an older five-axis VMC with a B-axis spindle was employed to produce the suite of 48 bodies, sides and lids for the control-box variants, which range in area from 75 x 150 mm to 300 x 300 mm, and from 5 to 20 mm deep. The components are smaller and more complex than most of the predominantly aerospace parts produced at the Dukinfield facility, and the HMCs are too large to machine them efficiently.

Originally, the process route required the use of a coolant-driven, right-angle attachment for drilling holes in the sides of components to avoid further set ups. The tool, while in many ways fit for purpose, could not hold the positional tolerances required, down to 100 µm true position. Drilling was not sufficiently repeatable over a batch of components and therefore a new engineering solution was sought, resulting in the installation of the new production cell based on the trunnion-type Hermle C400 five-axis machine.
Says Day: “Apart from the control-box work dictating the use of a five-axis VMC, there are parts of other aerospace contracts that lend themselves to a vertical-spindle production platform, and many new enquiries we receive also require such capacity. So the choice of a second VMC, particularly with automation, made business sense.
“I had never heard of the Hermle brand but Paul Mellor, technical director of the Hyde Aero Products division of which we are a member, was familiar with the manufacturer,” he continues. “Some of our staff travelled to a user of a smaller HS Flex system in the northeast and came back with very positive reports, including from the shop floor, so we decided to place the order.
“Luckily the C 400 was in stock at Kingsbury, so it was available quickly to solve a looming production bottleneck, whereas other potential suppliers were quoting lead-times of up to a year.”
Day says he was impressed that the machine was quickly into service after it arrived on site, with final commissioning within nine days, after which the machine started producing components straight away. This speed was down to the prior provision from the supplier of a CAD model of the C400, which allowed early 3+2 axis programming of parts in CATIA, cycle simulations in Vericut, and the design and production of fixtures. The latter exercise was helped even further by Kingsbury’s delivery to Dukinfield of an actual machine pallet.
Advance preparations made the on-site training provided by a Kingsbury engineer over a period of five days more productive than had the subcontractor’s staff still been at the start of developing the processes.

Another facet of the C400 cell that Day appreciates is programmable coolant pressure between 0 and 80 bar, providing engineering flexibility that includes the potential use of the coolant-driven drilling head in future projects.
The specification of the Hermle cell includes an 18,000 rpm/20 kW spindle, extended tool capacity from the standard 38 pockets by the addition of an 88-position magazine for HSK-A63 tools with breakage monitoring and measuring included, a Heidenhain TNC 640 control, 850 x 700 x 500 mm working area, +91/-139° trunnion swivel, and 500 x 400 mm pallet size and capacity for 12 of them on two levels in the HS Flex store. Of note, the HS Flex store is served by a three-axis pallet handling unit with rotary, lift and linear motions.
The store is controlled and managed by Hermle’s proprietary Automation Control System, which enables smart order management via a touch panel. In addition, the system is currently being interlinked with an MES that was recently installed in Dukinfield by Forcam, which is compatible with Stoneswood Precision’s ERP software. The system allows production orders to be sent directly to all machines for improved job sequencing, leading to optimised production output. This provision of enhanced data, including of machine utilisation, is taking the subcontractor’s operation further along the road of Industry 4.0.

Currently, the Hermle C400 HS Flex is devoted to the control-box contract, which entails supplying 300 assembled housings annually. All components are machined either individually on a pallet, or four at a time on a tombstone, depending on size, from solid aluminium billet in two operations involving milling, drilling and thread milling cycles lasting up to two hours per side. The true position of the holes is now well within tolerance.
For further information www.kingsburyuk.com

Automation key to retaining manufacturing in Europe

Irish manufacturing company Dromone Engineering, established in 1978 and now employing over 140 people, took a early decision early not to focus on providing a subcontract machining service, but instead to develop, manufacture and market its own product lines. The company has since become an industry leader in both, namely tractor pick-up hitches for the agricultural sector and excavator quick couplers for the construction sector.

Dromone Engineering also resolved to keep its manufacturing base at company headquarters in Oldcastle, County Meath, and not move production to a low-wage country in Asia or elsewhere. It is an admirable objective that many firms achieve, as has Dromone Engineering, but in its case there was a particular obstacle. Despite having to provide top-quality products for applications in the industries served by the company, price negotiations do not come down to the nearest euro, but to the nearest cent.
From the start, the dilemma of manufacturing in a first-world country and trimming prices to two decimal places has continually focussed the minds of the firm’s directors and shaped their capital investments. For example, in 1999 Dromone Engineering was among the first to harness the productive power of laser cutting with the purchase of two 3.5 kW CO2 machines from Bystronic for profiling mild steel sheet up to 4 x 2 m.
In March 2019, these long-serving, reliable machines were replaced with more up-to-date technology in the form of a ByStar Fiber 4020 10 kW fibre laser cutting centre from the same supplier. The machine was delivered as a turnkey package, automated by the addition of a bespoke material handling system and tower store that accommodates up to 96 tonnes of material on 17 levels.

Dromone Engineering’s managing director William Egenton explains: “We export almost all of our products to 39 countries, either directly to blue-chip customers like JCB, Volvo, Massey Ferguson, Claas and Kubota, or via a worldwide distribution network servicing other OEMs, dealer networks and rental fleets. Customers in the west, in particular, appreciate the fact that we manufacture safety-critical products tailored to their specific needs in Ireland, and are impressed when they visit us. However, to make the operation financially viable we have to use a high level of automation.
“That is why we have invested €5m over the past five years in not only the latest laser cutting technology, but in three Panasonic robotic welding cells, four Mazak horizontal and vertical machining centres, and ERP software,” he adds.
Ollie Devine, maintenance and capex manager, says: “With some forms of automated production, such as welding, component quality is raised compared with manual techniques due to the better repeatability of the process. In the case of the Bystronic laser cutting centre, and other CNC machine tools for that matter, high quality is already built in. Automation brings more efficient delivery of raw material and unloading of finished work, minimising idle times and maximising efficiency.”
Cutting output at Oldcastle has seen a dramatic increase. The single machine fed from the sheet storage and retrieval tower, which was purpose-built to be exactly 5.54 m high so that it fitted beneath the factory roof, produces 30% more than both of the previous CO2 machines combined. This performance is not only down to the speed of fibre laser cutting, but also because previous sheet replenishment, although automatic, was relatively slow. This task was achieved using swing-arm Byloaders to transfer material from pallets to the respective CO2 machines and offload the laser-cut sheets. Overall, utilisation of the machines was only 50 to 60%.

In contrast, the tower system has a pair of handling carriages. One transfers a laser-cut sheet to a twin offload table arrangement at the back of the ByStar Fiber, while the other more or less simultaneously picks up a new sheet from the store and loads it on to the machine’s shuttle table, from where it is immediately transported into the cutting area.
Little laser cutting time is lost and machine utilisation is around 90%. Labour cost is saved, as the operator is required to run the cell for only 2.3 shifts, rather than three, to achieve the required output, which currently satisfies the delivery of 11,000 tractor line products and 6000 construction line products per year.
The offload tables themselves are another good example of Bystronic’s bespoke approach to meeting customer requirements. To explain, the tables were purpose-built to be of different widths and heights, and to run on rails set in the floor, allowing one to pass beneath the other so both can sequentially access a shake-out area.
A single table would have delayed laser profiling, as the fast speeds achieved using a 10 kW source would have seen the next machined sheet often waiting for the shake-out station to become free, wasting valuable production time. Even with the twin table set-up, the productivity of the ByStar Fiber is so high that two people rather than one are often needed to remove components quickly enough from each sheet before the next one arrives.
Says Devine: “We process from 3 to 20 mm mild steel on the ByStar Fiber. The 10 kW laser cuts thinner gauges three to four times faster than a 3.5 kW CO2 source, a speed advantage that reduces as material thickness rises. It translates into reductions in production cost per part of two-thirds on thinner components, down to one-third on thicker parts. This is highly beneficial when chasing cents on the price of one of our finished products.
“Fibre cutting is a more stable process and less maintenance is required, helping to increase uptime, while running costs are lower in terms of both consumables and power,” he adds. “Other benefits of the new system are better air quality in the factory, as the automation has eliminated a lot of diesel forklift movements, while extra space on the shop floor makes the kitting area more spacious and ergonomic, so there are health and safety advantages too.”
A Bystronic solution was chosen for this project partly because the compact configuration fitted into a corner of the Oldcastle factory that was previously unused, saving 1700 sq m of space. Six machine tools will fit into the area where the CO2 lasers were removed, which will enable Dromone Engineering to develop further the lean manufacturing and flow line practices it embarked on a decade ago.

Egenton concludes: “The relationship between our engineers and those at Bystronic UK in Coventry has been highly cooperative. At the outset, the good communication facilitated the precise design of a laser cutting cell to suit our needs. During installation, Bystronic made sure that there was a seamless transfer from the old process to the new one within a two-week period, when they ran side by side. After we swapped over, we pressed the button and were in production straight away. It is unusual for such a complex system to be completely problem-free from the outset and everyone was very impressed. Since commissioning, the supplier’s service has been of a high level, which is important to us as we now have only one laser machine and therefore no production redundancy.”
For further information www.bystronic.co.uk

EDM boosts quality and lead times

Excel Precision Group has enhanced its wire and spark erosion capabilities by acquiring two new Sodick machines from Sodi-Tech EDM. Installed at the company’s Gloucester facility, which has AS9100 rev D and NADCAP AC7116/3 Rev B approval in place for both spark and wire erosion, the arrival of the Sodick ALC600G wire EDM and AG60L die-sink EDM will underpin a number of important contracts across both the civil and military aerospace markets.

Established in 1978, Excel Precision Group operates from two modern facilities in Gloucester and Leeds, which together house over 30 CNC wire and spark erosion machines. This capacity, along with its accreditations, make Excel one of the leading EDM subcontract operations in the UK, with particular emphasis on aerospace and defence.
“Few EDM subcontractors have both AS9100 and NADCAP approval,” states Steve Batt, operations director at the Gloucester facility. “This level of process control allows us to serve an extensive number of aerospace and defence customers. In addition, we currently hold company approvals from BAE Systems, Rolls-Royce, Goodrich, Safran Landing Systems, Dowty Propellers, Messier Dowty, MT Satellite, GE Aviation, Moog Aircraft Group, UTC Aerospace Systems, Mettis Aerospace and Triumph Actuation Systems.”
Along with the need to replace older machines, part of the reason behind the company’s investment in Sodick technology was due to the imminent ramp-up of an existing defence contract that is currently scheduled to run until 2022. An NDA has been signed, so details are scant, but the parts involve the intricate wire erosion of titanium stock.
“We looked at both Sodick and our existing supplier of EDM machines, but the test cuts provided by Sodi-Tech EDM were simply better,” says Batt. “In particular, the surface finish produced by the AG60L spark eroder really caught our attention. Due to the presence of debris, some machines struggle to replicate the surface finish achieved on the sides of parts, on the bottom face. However, this proved no such issue for the AG60L.”

Excel Precision’s AG60L has been set to work producing a variety of aerospace parts, including stainless steel actuator components. In total, the aerospace sector commands about 40% of the machine’s time. The other Sodick machine, the ALC600G wire EDM, has around 50% of its output sent to aerospace customers, including the titanium defence part.
“Compared with our old machines and process, using the ALC600G has transformed our operation for this component,” says Batt. “For a start, we previously needed two machines, whereas now the part is completed in its entirety on the ALC600G. Also, our old machine would only achieve a 90% pass rate on an angled face with a
5 µm tolerance. With the Sodick machine, the pass rate is 100%. That step-up in quality makes a real difference on high value-added parts such as these.”
Excel Precision is currently tasked with producing 200 of the titanium defence parts every month, although this figure will shortly rise to 600. Using the ALC600G, the company can produce around 24 per day. However, with work for other sectors, both Sodick machines run 24 hours a day, four days a week, with long cycle-time jobs loaded at the weekends. Aside from aerospace and defence, the company serves further high-end industries such as motorsport, nuclear, oil and gas, and medical.
“We’ve not had Sodick machines at Excel since before 1995, but we’re very pleased to make the switch back,” says Batt. “The technology has moved on considerably and we cannot fault the machines or the team at Sodi-Tech EDM, who have been very supportive since installation in early 2019. Through our own mistake, we once accidently set off the fire extinguisher on the AG60L, but the response was excellent and we were back up and running the next day.”
Excel Precision actually began life in Leeds, but started the Gloucester operation seven years ago through acquisition. The machines at Gloucester were around 20 years old and the company has since been progressing its way through a steady replacement programme.

“One thing we’ve noticed is the compact nature of the Sodick machines,” says Batt. “We were able to fit both Sodicks into the space previously taken up by one older EDM. Also, while we didn’t buy the machines for speed, it’s difficult not to notice the gains we’ve achieved. The titanium defence part previously had a cycle time of 65 minutes, but it’s completed in just 35 minutes on the ALC600G wire EDM, a 46% improvement. As for the AG60L die-sink machine, the results we get, particularly on deep cavities, is like nothing we’ve seen before. We have also reduced our electrode consumption dramatically; we now complete many jobs using just one electrode.”
Good growth over the past two years has seen Excel Precision Group hit an annual turnover of £2m, and more growth is expected moving forwards.
“There are many factors that set us apart from competitors, not least the capacity we offer and the accreditations we hold,” concludes Batt. “In addition, we believe the level of work and service we provide is second-to-none. It’s all about quality, on-time delivery and customer communications, all backed up by investing in the latest technologies.”
For further information www.sodick.org

HMCs double productivity and improve accuracy

In its 25th anniversary year, the Plymouth plant of hydraulic motor, pump and valve manufacturer Kawasaki Precision Machinery has seen a far-reaching reorganisation of its K3VL axial piston pump machine shop. This initiative follows the purchase in October 2018 of a pair of twin-pallet, horizontal-spindle machining centres (HMCs) from Heller Machine Tools to replace two ageing, double-pallet models on which it was becoming difficult to hold tolerance.

One of the new Heller H2000 HMCs, which are manufactured at the supplier’s factory in Redditch, is devoted to machining pump cases, while the other HMC mills and drills valve covers. The components are produced from grey iron castings that have had their bores pre-turned on a lathe in preparation for two-operation prismatic machining. Around 20,000 of each component are produced per year.
Production engineer Mark Pellow says: “In the case of the valve cover, the machining time of 50 minutes plus 10 minutes load/unload on the former production centre has been replaced by a 32-minute cycle on an H2000. For the pump case, the former machining time was 48 minutes plus 10 minutes, for handling, while the current cycle takes just 30 minutes.
He adds: “As set-up is carried out on the other pallet during machining, the next component is presented to the spindle within seconds by automatic pallet change (APC), so productivity has been nearly doubled for both components.”
The two process routes have been changed to enable such a significant increase in output. Parts are still loaded two at a time on a tombstone for op 1 and op 2 machining. One difference now is that fixtures have been built into a suite of tombstones to accept the castings directly, rather than first having to mount the parts on to work-holding plates. The latter double-handling procedure used to eat into much of the spindle uptime on the previous machines.

There is a second, even more important difference, however. When nearby Morris Engineering produced the work-holding solutions for Kawasaki, it arranged the two fixtures so that one is on a tombstone face and the other is mounted across the top, improving tool access. The result is that any given tool can machine more features throughout the whole cycle, the program no longer being split into two, so fewer tool changes are needed, leading to less idle time. Tool exchange itself is also faster at 2.8 seconds chip-to-chip, as are rapid traverses at up to 90 m/min around the 630 mm working cube.
In-cut times are shorter as well on the Heller horizontal machining centres due to the faster cutting feed rates and spindle speeds. This cutting data is coupled to the use of Seco’s latest insert-based and solid-carbide tooling having long service life, reducing the need for worn tool replacement. A 6.2 mm diameter solid-carbide drill now produces holes to depth at a fast feed rate, for example, compared with the previous need for a high-speed-steel drill to peck in 5 mm increments up to 20 times at a slower infeed. The use of carbide form drills from UTT also speeds hole production.
Further savings within the machining cycles derive from better probing of more features for establishing workpiece position, which allows most fixed datums to be live, minimising operator adjustments relative to them.
Not only is productivity almost doubled by the new processes, but accuracy of machining is also improved, allowing tolerances to be held easily. For instance, 50 µm valve cover concentricity, 20 µm servo piston concentricity and 0.2 mm dimensional accuracy on bolt holes are held to support a process capability of at least Cpk 1.33. Previously, some tolerances when checked on the Mitutoyo shop-floor CMM were close to their limits and engineering intervention was frequently needed.
Currently, production for one pump frame size is carried out on the Heller H2000s, but a further two sizes will be phased in over the coming months, entailing more than 30 part numbers encompassing all variants.
As to Kawasaki’s choice of Heller HMCs for this latest project, bearing in mind there are already two other brands of horizontal-spindle machine on the shop floor and a fourth was also considered, Pellow says: “As is often the case with machine tool purchases, we constructed a checklist of machine attributes from speeds and feeds, through health and safety features, to price.

“In this appraisal, 19 items were listed on a spreadsheet and Heller’s overall score came out on top,” he adds. “The fact that we use four other Heller HMCs that are about a dozen years old yet are still reliably producing a valve block and two cases for our KV3 pump, also helped the decision-making process.”
For further information www.heller.biz