Vollmer adds capacity at PCD tooling specialist

Through the 1980s and into the early 1990s, Ted Ford was working as a general manager for a single crystal diamond (SCD) tool company that was heavily involved in the superfinishing sector. However, mergers and acquisitions gave Ford the opportunity to buy the diamond tool division from Norton Abrasives and in 1993, STF Precision was born.

Unlike most cutting-tool manufacturers that graduate from standard cutting tools and progress to high-end product lines, STF Precision applied its expertise in ultra-precision super surface finishing SCD tools and transferred that knowledge to the diamond-coated and PCD cutting-tool sector – eventually progressing into the solid-carbide cutting-tool market. The journey from SCD into PCD started in 2001 when Ford sold the business to his son Jason Ford, who decided to extend the product portfolio. The Arden-based business duly bought a series of wire-erosion machines and then a PCD erosion machine from Vollmer.
Starting off with diamond-coated drills and countersink tools for the aerospace market, Jason Ford realised that the Vollmer QXD200 disk erosion machine was the optimal choice for the business.
“We looked at all the available options, but the Vollmer was by far the best machine,” he states. “As a company, we recognised the opportunities of erosion/grinding machines from Vollmer for developing fluted PCD tooling, especially with the rise of composite materials in the aerospace industry. We wanted to loosen the stranglehold that some competitors had on this market, and it was Vollmer that helped us to attack this area. In addition, we were a relatively small company at the time and Vollmer gave us favourable financial terms to get the first machine through the door.”

Bringing the first Vollmer QXD200 machine to the USA in 2006, STF Precision initially struggled to break the aerospace sector, but fortunately the flexibility of the QXD200 provided the opportunity to extend its offering for the automotive market.
“Being a business known for its micron precision, we started to get into the automotive industry and the production of cutting tools for piston production,” says Ford. “We started making groove tools, insert and form tools, and more. With an ability to produce tools to a precision level of less than ±2 µm and form angles below ±15 minutes, we found a niche manufacturing tools for high-silicone content materials in the automotive market. We got opportunities with tier-one manufacturers like Linamar, which makes parts locally. From there, we progressed to other companies such as Honda Canada, ZF, Denso, Borg Warner, Toyota and many others.”
Building this foundation for growth, the arrival of the first Vollmer machine was one of the cornerstones for success at STF Precision.
“From 2001 to 2008, we had grown from $750,000 turnover to over $3m,” says Ford. “With our investment in Vollmer technology and automation down the years, we now have a turnover of $12m and more than 70 staff. Today, we’re running machines unmanned overnight, which was a necessity for reaching our growth targets.”
Following the first QXD200 machine in 2006, another two QXD200 machines arrived between 2008 and 2010 for the production of milling cutters, reamers and drills, with a QXD250 installed in 2012.
“The wire machines we purchased before the arrival of the Vollmer models required a 4th axis rotary head for processing round tools,” explains Ford. “In contrast, the Vollmer QXD200s and QXD250 were at least 30% faster; they were far more efficient and certainly more accurate. Furthermore, without the wire we are removing the potential for breakages and downtime. We also installed the new QXD machines with 29 tool station loaders that gave us unmanned automated production around the clock and at weekends. Our production capacity more than doubled, with just a skeleton second shift to load machines outside of normal working hours.”
With its exponential growth trajectory, STF Precision progressed into more complex geometry PCD form tools for the automotive market. In 2014, this resulted in the business investing in its first Vollmer wire-erosion machine.
“Our customers were requesting more complex internal form tools and large diameter milling cutters, and once again we turned to Vollmer,” says Ford. “The solution was the QWD760 machine and, as far as I’m concerned, this is the most accurate wire machine in the world for processing cutting tools.”
The first QWD760 machine proved so successful, a second machine arrived in 2016.

“The QWD760 is a great machine and we were so happy with it that we installed a QWD760H featuring a 12-station automated loader soon after the first machine was installed,” he says. “With our complex-geometry automotive tools taking upwards of 3 hours to process, the 12 station QWD760H can run for days without operator intervention.”
The added capacity provided by the automated Vollmer QXD and QWD machines has seen the STF Precision product portfolio expand beyond all recognition in recent years. Designing and developing solutions in close co-operation with its customers, the automotive customer base has evolved beyond bespoke piston production tools to specialised tools for engine blocks, cylinder heads, transmission casings and other powertrain, transmission, axle and suspension parts. The Vollmer installations have perfectly positioned STF Precision for growth in the automotive industry, with more than 65% of the company’s turnover generated from the sector. However, the proclaimed precision, productivity, capability and flexibility of the Vollmer machines have also positioned STF for growth in the aerospace market.
“Super surface finishing SCD cutting tools have remained a small percentage [5%] of our business due to their niche market applications,” says Ford. “However, these SCD tools are also gaining popularity in the automotive market and this puts us in a good position moving forward. That said, the real growth market at present is aerospace. In recent years, this has grown to become 25% of our turnover and we see great potential for growth here.”
The company has also witnessed significant progress in its solid-carbide tooling department. Here, STF Precision once again turned to Vollmer, installing the Vgrind 160 with HP160 pallet loader in 2017.
“We bought the Vgrind 160 because it has the flexibility to pocket PCD tools and manufacture complete solid-carbide tools,” says Ford. “Our initial thinking was to install the machine for pocketing PCD tools, but our growing deviation into carbide tools has seen the Vgrind become dedicated to producing carbide drills, end mills and reamers from 2.5 to 25 mm diameter.”
The five-axis Vgrind 160 incorporates two vertically aligned grinding spindles with the wheel set at the C-axis pivot point. This novel kinematic configuration enhances rigidity and the subsequent surface finishes on the cutting tools, while reducing processing times.
“We are now manufacturing and supplying our customers with over 300,000 PCD inserts every year,” says Ford. “Added to this, we’re producing hundreds of bespoke PCD cutting tools and brazed tools each month. This number of PCD tools doesn’t include the recurring servicing of PCD tools for existing customers. However, it’s the solid carbide market that is growing in volume. The carbide business is lower cost, higher volume and we are already manufacturing a few thousand end mills, reamers and drills every month.”
With continued growth, STF Precision visited the Vollmer VDays event in 2018 and was immediately impressed by the latest VPulse 500. Utilising the tried-and-tested Vollmer VPulse EDM erosion generator and incorporating it for the first time into wire erosion, the VPulse 500 demonstrates higher material removal rates or optimised surface quality. Furthermore, the VPulse 500 has been purchased with the HR external workpiece storage and automation system, which enables the customer to process up to 16 tools with a maximum diameter and length of 300 and 500 mm respectively.
For further information www.vollmer-group.com

High-efficiency gear hobbing

Rotary actuators from HKS Dreh-Antriebe GmbH are jacks-of-all-trades, and are used whenever an object must be rotated or swivelled. The company uses Emag Richardon’s vertical hobbing machines to create special external gearings on the central piston of the rotary actuator: two of these are installed at the HKS location in Hesse, Germany, with a new R300 unit at the Neukirch plant in Saxony.

These machines have a very demanding list of requirements that must be met. For instance, due to the variety of products manufactured, the machine must be re-tooled frequently and yet still deliver flawless gearing quality.
Being able to accelerate, brake, precisely position and then hold an object in place, is not an uncommon request. For instance, when a refuse truck from the local disposal service lifts the container and empties it with a swivelling motion, more often than not an HKS actuator is providing the lifting power. The same applies for the fire department’s rescue platforms, or particularly large excavator shovels. At the other end of the spectrum, rotary actuators from HKS are used in industrial production, to ensure the precise tipping of collection bins, the quick movement of mixing devices or easy completion of tool changes on a machine, for example.
Rotary actuators are based on various actuator principles and feature different performance characteristics and sizes. Given all this diversity, is there such a thing as a broad basis for success at HKS?

“At the end of the day, it’s always a matter of developing very precise actuators; being able to durably withstand the highest loads and work efficiently,” explains Mario Vogt, head of operations at the HKS plant in Neukirch. “We therefore develop highly bespoke solutions for many customers and operate our three production sites in Germany with high vertical integration. Our experience flows into each and every development. This is the basis on which we have become one of the leading manufacturers in this field.”
Another reason why this is such a particularly challenging type of gear manufacturing becomes obvious when looking at the various operating principles of rotary actuators. Take helical rotary actuators, for instance; this type of actuator converts the linear movement of an actuated piston into the required rotary motion. The piston’s high-helix thread is then combined with the internal gearing of the cylinder that surrounds it – the longer the linear movement of piston, the greater the rotational movement.
This principle is as simple as it is effective. However, depending on the area of application, a tremendous amount of force may also be placed on these gearings. The typical areas of application for HKS torque motors in industry and engineering demand reliability. For this reason, only extremely stable and precise gearings are produced – the reject tolerance is zero.

The fact that HKS executives approached Emag with this challenge is no coincidence, since two Richardon hobbing machines are used at the production site in Wächtersbach, Hesse. Their reliability and efficiency should now make an impact at the Neukirch site, considering that the existing gear-cutting machines installed there were already ageing.
“One of our goals was to handle increasing production volumes for gears at a higher machining pace, since our technology is being implemented in a growing number of application areas,” explains Vogt. “At the same time, re-tooling the hobbing machine must be very fast and easy, since our batch sizes can range from one to 50. Batch size changes occur almost daily. That’s why it’s important for us that the re-tooling process can be completed within a few minutes, depending on the component. Production starts immediately once we’ve run in the machine with a sample.”
The R300 vertical hobbing machine from Emag Richardon has been running at HKS since March 2019. Throughout this time, there has been a tremendous increase in performance when compared with the technology used previously. For example, the operation time has been reduced from up to three hours to about 30 minutes when machining very large gearings. At the same time, the tool life of the hob has increased by approximately 30%.
In summary, the vertical hobbing machine is able to machine module 3 external gearings from 90 to 350 mm in width. The pistons generally range from 200 to 500 mm in length and weigh between 2 to 200 kg.
“This broad range of components is directly linked to a particular strength of Emag Richardon’s technology: generous fundamental design principles,” explains Michael Ossot from Emag’s sales team.

The machine also stands out because of a variety of details in its design: the base of the machine is made of high-quality cast iron, which reduces vibration. Emag’s machine is also very thermostable. The workpiece table with torque motor is another important aspect, since its direct drive is free of wear, backlash and maintenance, and precise in its movements. This factor benefits precision during the machining process. The double V guideways on all axes are another notable mark of quality.
In 2017, the Emag Group acquired Richardon and gained extensive experience in gear cutting for large components. It was important to HKS that this transition did not lead to any technological changes to the design of the machines, as confirmed by Vogt: “We have had a great experience with this technology and obviously wanted to establish the same efficiency and flexibility at our Neukirch site, without any change in mechanical engineering. Emag were able to guarantee this.
“We’re continuing to see the benefits of our investment decision,” he adds. “The machine allows us to produce significantly larger unit volumes in a comparable time period. Considering that rotary actuators are continuing to be implemented in a growing number of application areas and the market for this technology is growing, this is a key enabler of our success.”
For further information www.emag.com

Milling times cut by a quarter

David Watt, owner of subcontractor DW Engineering, has trebled the size of his business since the beginning of the decade, with most of that growth taking place last year, when turnover doubled. He puts this success partly down to winning contracts for machining batch sizes up to 10 times larger than previously, which he largely fulfils using four Hurco vertical machining centres. Orders are now frequently received for thousands-off rather than hundreds.

New work in the electronics and gas detection sectors has been secured, as well as in the resurgent oil and gas industry, while 80% of throughput is repeat business, some of which has been retained practically since the company was formed.
A further contributor to increased turnover and indeed profitability is Adaptipath high-speed machining software, which includes novel routines for rest-material removal in the latest version of Hurco’s WinMAX conversational control. Program cycles are significantly faster, especially when pocket milling.
Established in 2005 in Blantyre, near Hamilton, the subcontractor started using Hurco equipment from the outset with the purchase of a machining centre of nominally half-metre-cube capacity, and two CNC knee-type mills.

Together with a Hurco VM10 machining centre acquired five years later, these four machines were subsequently traded in for three of Hurco’s latest VM10i CNC vertical machining centres. One arrived in 2018 and was joined by two more this year. Additionally, there remains on the shop floor a smaller Hurco VM1 with 4th axis purchased in 2009, as well as a bar-fed Hurco TM8 CNC lathe that was installed six years later.
The Hurco VM10i offers travels of 660 x 406 x 508 mm in the X, Y and Z axes respectively, with a spindle nose to table distance of 102 mm. The 762 x 406 mm table is designed to span the entire Y axis, providing sufficient flexibility to produce a high mix of parts. Table loads of up to 340 kg can be accommodated. The machine is served by a 10,000 rpm spindle offering a power output of 11 kW and torque of 73.6 Nm at 1450 rpm. A rapid traverse rate of 24 m/min is offered in all three axes. Also provided as standard is an electric, side-mounted, 20-tool ATC. The swing-arm design means the ATC stays out the way, maximising the size of the work cube.
Comparing the performance of the nine-year-old VM1 with that of his three modern, slightly larger capacity Hurco VM10i vertical machining centres, Watt refers to an aluminium housing for an electronics industry customer that he has produced in two operations on both types of machine.

On the earlier model running a previous release of WinMAX programming software that included Ultipocket milling routines, the total cycle time was 165 minutes. However, that was before Hurco introduced Ultimotion software to control axis movements on its machines, without relying on hardware-based motion control. This addition has helped to reduce the cycle time for producing the electronics housing to 120 minutes, a saving of more than 27%.
Contributing especially to this increase in efficiency is the Adaptipath pocket-milling software with its new rest machining routines. The conversational pocketing feature is a module within Ultipocket in WinMax 10, mirroring that used in high-end CAD systems. This feature smooths the motion of the tool path and keeps chip load between a user-defined maximum and minimum, improving surface finish and extending tool life.
In addition to the two standard pocketing cycles involving inward and outward spiralling of the cutter, Adaptipath includes two extra rest machining routines, zig-zag and one-way, both of which involve alternate periods of climb milling. The amount of material encountered by the cutter is controlled, often allowing a full depth of cut rather than peck level milling, for higher metal removal rates that Watt says can be up to double.
With rest machining, a larger diameter tool than usual is used after roughing to remove most of the remaining unwanted material efficiently, followed by a finishing pass that automatically swaps the tool for a smaller diameter cutter to reach areas of the feature which the larger rest milling tool is unable to access. Watt considers this to offer a six to eight fold speed increase compared with previous machining methodology.
Looking back at his company’s progress over the past 14 years, he says: “The variety of materials we are asked to process is vast, ranging from stainless and mild steel, through titanium, copper, bronze, brass and aluminium, to PTFE, PEEK, acetal and nylon. Accuracies of ±0.1 mm are routinely achieved, but some parts have drawing tolerances down to ±10 µm.

“We have never needed a CAM system to prepare programs for the Hurco machining centres, as the on-board conversational software is so powerful at creating the cutter paths – and there is no need for post processing,” explains Watt. “If any particularly complex geometry is included in a CAD model supplied by a customer, we use AutoCAD or SolidWorks to produce a DXF file that WinMAX imports directly.
“The Hurco machines, which continue to evolve and improve, have supported our diverse work and underpinned our success,” he concludes. “They are key to our ability to offer top-quality work, quick turnaround times and competitive prices.”
For further information www.hurco.co.uk

Multi-spindle technology put to optimum use

Richard Moser KG Präzisionsdrehteile in the Swabian municipality of Bubsheim, Germany, is a success story tightly interwoven with the Swiss turning centre manufacturer, Tornos.

“If you want to be successful on the Heuberg, the stronghold of the turning industry, you have to be better than everyone else.” This is the attitude that drives Richard Moser, the company’s managing director. When Moser took over the family business in 1993, he had four employees and 10 machines. Working for his company today are 140 specialists and 100 lathes, 50 of which are multi-spindle models. There are many reasons for this rapid growth. For one thing, Moser has consistently employed the latest technologies. And, it would seem that this ethos is in his blood. His father and his uncle were among the first to bring multi-spindle technology on to the Heuberg.
Complex workpieces in demanding materials, of superlative quality, produced on a mass scale, are his strengths. These factors are what the team and machine inventory of Moser Präzisionsdrehteile are geared towards.
Enrico Barbagallo, a young project planner at Moser, says: “We manufacture parts on our multi-spindles that hardly anyone else would dare attempt.”
The automotive industry, one of Moser’s main customer bases, is currently in search of new high-strength materials to optimise parts for engine management systems.
“That’s why we are increasingly processing high-alloy steels costing sometimes up to €18,000 per tonne,” says Barbagallo.
The make-ready stage, in particular, calls for a great deal of intuition, and is where the experience and flexibility of the young team come into play.
“When we’re under pressure, we can make a multi-spindle ready in two to three hours,” says Barbagallo. “For initial samples, the multi-spindles at Moser are even set up for 100 parts, while in series production, the multi-spindles are usually prepped for quantities of 20,000 or more components.
At the turn of the millennium, Industry 4.0 was not even born when Sandra and Richard Moser decided that they would need a new ERP system. Instead of settling for the existing solutions of major software providers, they had their own system programmed, employed IT experts and are now profiting from a system unlike any other.

As all machines are linked to the system, Moser always has an up-to-date overview of each and every production job. The hardware equipment of all the machines alone cost around €500,000. The system supplies up-to-date information on manufacturing times, machine capacity utilisation and production quantities. In the flow of goods, the manufacturing status is clear to see at any time, which means that every employee can immediately provide the customer with progress updates.
Ever since his father and uncle purchased the first Tornos multi-spindle turning machine, an AS 14 in 1968, there has been a close relationship between Moser and the Swiss lathe manufacturer. Even today, Richard Moser remains fascinated by its successor model, the SAS 16, and regrets that these machines are no longer being made.
“This quality, productivity and reliability is so rare to find these days,” he states.

Moser is delighted, however, that Tornos has been able to continue with tradition through the MultiDeco and the new MultiSwiss. These machines are almost as productive as the SAS but, of course, they are fundamentally more versatile. Moser is particularly keen on the MultiSwiss. He saw it for the first time at EMO in 2011 and purchased one there and then, making him the first customer.
A few weeks ago, he took delivery of the 300th machine of this type that Tornos has made, expanding his inventory to 15 MultiSwiss machines. Moser has already ordered his next three and, by doing so, continues to contribute to the success of this model.
The MultiSwiss was launched in 2011, when multi-spindle technology was still considered highly complex, and is known today for its ergonomics and machining performance, says Tornos. Conceived as a solution to bridge the gap between multi-spindle and single-spindle turning machines, the MultiSwiss 6×16 features six spindles, while the spindle drum is positioned by means of torque motor technology. The cycle times of this solution rival those of cam-controlled, multi-spindle automatic turning machines.
Thanks to its hydrostatic spindle bearings, the MultiSwiss is said to achieve high levels of surface finish (0.15 Ra) and smooth-running performance, even with materials that are difficult to machine. It is also distinguished by its generous tool package. Unlike some other machinists, Moser also finds the compactness of the machine, with its 1.5 m bar stock, to be the ideal size.
Above all, however, experts in multi-spindle turning machines are not required to program the MultiSwiss 6×16. Set-up and start-up are said to be a breeze. This user-friendliness and ergonomics are what Barbagallo finds so attractive, but Sandra Moser does see one small downside. “Those who work on the MultiSwiss for the first time tend to prefer not to work on any other machine afterwards,” she says.

The turned parts industry currently faces some major challenges. Geopolitical upheavals, radical change in the automotive sector, new technologies and the economic downturn are leaving their mark in this sector. In an era when some competitors are reining in their spending, Moser is consistently investing in improvements to his processes and workflows. Furthermore, thanks to a special energy efficiency programme, he expects to make appreciable savings over the next few years. To this end, the cooling of the machines has been coupled to their capacity utilisation, the heating/cooling circuit closed, and a photovoltaic system installed on the roof.
For further information www.tornos.com

Tooling boosts productivity at automotive subcontractor

Scottish subcontract manufacturer Euro Precision Ltd has specified cutting tools from Industrial Tooling Corporation (ITC) to improve productivity on a range of automotive components. The Glenrothes-based subcontract engineering company has built its reputation on manufacturing critical precision components and assemblies to exacting quality standards for the automotive, aerospace, medical, telecommunications petrochemical and electronics sectors.

The diverse customer base has been established over a 25 year history, and from its 30,000 sq ft factory, the company boasts clients such as Siemens Healthcare, Glenair, Leonardo, Zeiss and AMG Petronas, to list but a few. With a customer base of which any subcontract business would be proud, Euro Precision has established a reputation for the production of high-quality workmanship, inspired innovation, cost-effective solutions and customer service.
The Fife company recently undertook a project for Mercedes HPP (High Performance Powertrains) that required programming and tooling efficiencies, and general improvements for machining a series of engine components. The complex outlet manifolds and valve waste assemblies are produced from Inconel 625 on Euro Precision’s Matsuura MAM-72 five-axis multi-pallet machining centre. Manufactured for the next generation of supercar, the Mercedes HPP project requires over 2700 manifold outlets and 2000 valve waste assemblies. With such production volumes, it was critical for Euro Precision to get the process running
as efficiently as possible, and this is where ITC entered the fray.
Commenting upon the situation, Euro Precision’s engineering manager Grant Steele says: “We required a stable process that could achieve the shortest possible cycle time, while returning good size control and cost-effective tooling solutions. I already tooled the part up with another manufacturer and, because material was Inconel 625, I was expecting to take a hit on slower machining times and poor tool life. However, based on production requirements and the project timeframe, I couldn’t live with the current method.

“I discussed the situation with Gary Heaney from ITC,” he continues. “Gary has been a regular supplier of high-quality aluminium cutting tools to Euro Precision for a long time. Down the years, he has successfully supported us on many machining projects to reduce cycle times, tooling costs, and improve our machining performance and consistency. With his experience of supplying tooling to the aerospace engine sector – primarily involving the cutting of high-temperature alloys – Gary seemed the obvious go-to person.”
Heaney immediately manged to double surface speeds by introducing ITC’s Cyber series of multi-flute, variable-helix end mills and a trochoidal machining strategy at 3xD axial depth of cut with 4% radial step over and high feed per tooth.
“With some subtle programme changes, we instigated a trochoidal machining strategy that increased the step over and radial engagement with the application of ITC’s 12 mm diameter solid-carbide Cyber series,” says Steele. “This reduced the cycle time by 50% and increased tool life by three times.”
By implementing a machining strategy that incorporated a 3xD axial depth of cut instead of the previous 1.5xD strategy, Euro Precision was able to conduct most of the rough machining in a single pass. The machining parameters far exceeded the realms of possibility for the previous tools supplied by a prominent international tooling vendor. Notably, the performance of the ITC Cyber series and its ability to prolong machining on such a challenging material led to further ITC solid-carbide end mills being introduced to the project.
Says Steele: “Following the success of the roughing tools, I asked Gary to look at the entire part. He subsequently supplied a range of radii corner tools and micro ball end mills that have performed first time, every time. We’re now machining another high-performance engine component and ITC’s Cyber tooling is again producing the goods.

“Gary certainly hasn’t rested on his laurels,” adds Steele. “He is always looking to provide continuous improvement and we are already testing new indexable tooling solutions from ITC business partner Widia.”
The Scottish manufacturing success story at Euro Precision is built upon the foundation of high-specification machine tools like the two Matsuura MAM72 five-axis machining centres. The Matsuura machines incorporate the Big Kaiser face and taper dual-contact spindle interface, which ITC says is the only genuine face and taper contact system on the market. To benefit from the performance, rigidity and precision of the Big Kaiser face and taper system, which guarantees run-out of 1 µm at the nose and 3 µm at 4xD, Euro Precision has installed a complete range of Big Kaiser precision collet and chuck systems (available in the UK from ITC).
The stability of the Matsuura spindle configuration and Big Kaiser face and taper interface has enabled ITC to introduce a variety of high-performance tooling solutions. Included are a complete suite of five and six-flute VariMill end mills, as well as indexable face and shoulder milling tools from Widia with both rough and finish machining insert designations.
The machining platform has enabled ITC’s Heaney to utilise both the ITC and Widia tools to full effect. Ultimately, the results have been a revelation to Euro Precision, which has also implemented Widia indexable drilling and turning, as well as solid-carbide drilling tools, to great success following the Mercedes Inconel project.
For further information www.itc-ltd.co.uk